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Abstract

The movement of water and chemicals in soils is generally better described with multidimensional non-
equilibrium models than with more commonly used one-dimensional and/or equilibrium models. This
paper presents analytical solutions for non-equilibrium solute transport in semi-infinite porous media
during steady unidirectional flow. The solutions can be used to model transport in porous media where
the liquid phase consists of a mobile and an immobile region (physical non-equilibrium) or where solute
sorption is governed by either an equilibrium or a first-order rate process (chemical non-equilibrium). The
transport equation incorporates terms accounting for advection, dispersion, zero-order production, and
first-order decay. General solutions were derived for the boundary, initial, and production value problems
with the help of Laplace  and Fourier transforms. A comprehensive set of specific solutions is presented
using Dirac functions for the input and initial distribution, and/or Heaviside or exponential functions for
the input, initial, and production profiles. A rectangular or circular inflow area was specified for the
boundary value problem while for the initial and production value problems the respective initial and
production profiles were located in parallelepipedal, cylindrical, or spherical regions of the soil. Solutions
are given for both the volume-averaged or resident concentration as well as the flux-averaged or flowing
concentration. Examples of concentration profiles versus time and position are presented for selected
problems. Results show that the effects of non-equilibrium on three-dimensional transport are very similar
to those for one-dimensional transport.

Introduction

Many experimental and theoretical studies have been undertaken to
improve the understanding, management, and prediction of the movement
of dissolved substances in soils. These investigations are primarily motivated
by concerns about possible contamination of the subsurface environment.
Although several uncertainties still exist, and probably will remain for some
time, regarding the correct description of water and solute transport processes
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in field soils, subsurface solute transport is generally described with the
advection-dispersion equation (ADE). In the deterministic approach,
explicit closed-form solutions for the transport problem can often be derived
if the model parameters are constant with respect to time and position. One-
dimensional solutions of the ADE have been widely reported for equilibrium
transport (e.g. Van Genuchten and Alves, 1982) and to some extent for non-
equilibrium transport (Lassey, 1988; Van Genuchten and Wagenet, 1989). In
spite of the fact that many transport problems are multidimensional, relatively
few analytical solutions have been reported for two- and three-dimensional
transport (e.g. Wexler, 1989),  particularly for non-equilibrium transport
(Goltz and Roberts, 1986). This is surprising since such analytical solutions
can be deduced quite easily from one-dimensional solutions.

Goltz and Roberts (1986) provided analytical solutions for two-region-type
mobileeimmobile models applicable to transport from an instantaneous point
source in an infinite porous medium made up of rectangular, cylindrical, or
spherical aggregates. Transport between the two regions was governed by a
first-order rate expression. Analytical solutions for the concentration distri-
bution inside the soil aggregate were obtained by solving Fick’s law for
diffusion assuming different aggregate geometries. The solutions by Goltz
and Roberts (1986) are applicable to transport involving horizontal flow in
infinite aquifers. An alternative, and equally common, pollution scenario
involves downward flow from the soil surface. The semi-infinite nature of
such a transport system makes the solution slightly more complicated, but
also more general than the infinite case treated by Goltz and Roberts. Since
the size and geometry of soil aggregates is poorly defined for field problems,
no attempt is made to solve the more complicated problem for solute trans-
port in a porous medium consisting of idealized aggregates.

The problem to be investigated here is of a very similar nature to, but more
comprehensive than, the equilibrium case outlined by Leij et al. (1991). The
solution procedure is based on previous work for one-dimensional non-
equilibrium transport assuming a first-order rate exchange (Van Genuchten
and Wagenet, 1989; Toride et al., 1993) and multidimensional transport (Leij
et al., 1991). The objective of this paper is to combine these two approaches
and to provide a relatively concise set of solutions of the three-dimensional
non-equilibrium ADE for a wide variety of boundary, initial, and production
value problems.

For clarity of presentation both the ‘chemical’ and ‘physical’ non-
equilibrium models will be formulated. These models will be cast in the
same dimensionless form for subsequent mathematical analysis. After
outlining the general solution procedure, analytical solutions are presented
for the equilibrium and non-equilibrium concentrations as volume- and flux-



F.J. Leij et al. / Journal of Hydrology 151 (1993) 193-228 195

averaged types. General solutions will be given for: (1) the boundary value
problem (BVP) with an arbitrary solute input, which depends on time and
transverse spatial coordinates; (2) the initial value problem (IVP) using an
arbitrary initial distribution, which depends on all three spatial coordinates;
(3) the production value problem (PVP) based on an arbitrary production
profile, which depends on time and the three spatial coordinates. Although the
general solutions are relatively inconvenient for further use, they can be
greatly simplified for some practical input, initial, and production profiles
described by Dirac, Heaviside, or exponential functions.

Model description

Solute movement in an isotropic soil during one-dimensional downward
flow and with three-dimensional dispersion is modeled analytically by assum-
ing that both the velocity and the dispersion coefficients are constant with
respect to time and space. These assumptions are approximate but may be
adequate for many applications. Furthermore, solutes are assumed to be
subject to linear retardation (i.e. equilibrium sorption between solution and
sorbed phases can be described with a linear isotherm), and zero- and first-
order production or degradation processes. Non-equilibrium is attributed to
differences in exchange sites (assuming equilibrium sorption for ‘type-l’ and
non-equilibrium sorption for ‘type-2’ sites), or to mobile and immobile fluid
regions (Van Genuchten and Wagenet, 1989).

In the two-site model, non-equilibrium sorption for type-2 sites is typically
described with a first-order rate law (Selim et al., 1976; Cameron and Klute,
1977). The governing equations for this ‘chemical’ non-equilibrium model
may be written as

- 7 [(l -f)kc  - s,J - plc -f+c + X1(x,  y, 2, f)

ask
at = a[(1 -f>kc - Sk] - /i,s  ksk + c1 -J)&,k(X>_h z, f>

where c is the volume-averaged solute concentration in the liquid phase
(MLe3),  Sk is the concentration in the sorbed phase for type-2 sites
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(MM-‘); t is time (T); x is position (L) in the direction of flow; y and z are
rectangular coordinates perpendicular to the flow direction (L), i.e. parallel to
the soil surface; D, is a dispersion coefficient (L2T-‘)  in the x direction (i.e.
representing longitudinal dispersion); D, and D, are transverse dispersion
coefficients in the y and z directions, respectively; 13 is the volumetric water
content (L3LP3); v is the macroscopically averaged downward pore-water
velocity (LT-‘);fis  the fraction of type-l exchange sites, p is the bulk density
(MLe3); k is a distribution coefficient for linear sorption (MLP3), LY  is a first-
order kinetic rate coefficient (T-l);  pI and ps are first-order decay coefficients
for degradation in the liquid and sorbed phases, respectively (T-l);  X1
(MLm3TP’)  and A, (MM-‘T-l) are time- and position-dependent zero-order
rate coefficients for solute production in the liquid and sorbed phases, respec-
tively; while the subscripts e and k refer to equilibrium and kinetic exchange
sites, and 1 and s refer to the liquid and sorbed phases.

The ‘physical’ non-equilibrium model assumes that the liquid region can be
partitioned into mobile (or flowing) and immobile (or stagnant) regions, that
solute movement occurs by advection and dispersion in the mobile region, and
that solute exchange between the two regions occurs by first-order diffusion
(Coats and Smith, 1964; Van Genuchten and Wierenga, 1976). The governing
equations for the two-region model are

[ei, + (1 -flpk] 2 = Ck!(C, - Cim) - [4mPl,im +  (l -J)PkPs,itnlCim

+  eimXl,im(X~Y~z~  l> +  (l -J)PXs,im(X,Y7z,  l) ( 2b)

where in this casefrepresents the fraction of sorption sites in equilibrium with
the fluid of the mobile region and a is a first-order mass transfer coefficient
(T-l);  the subscripts m and im refer to the mobile and immobile liquid regions,
respectively, with 13 = 13~ + Oim.

The two-site and the two-region models can be cast in the same dimension-
less form using the parameters listed in Table 1. Notice that several
parameters in Table 1 are expressed in terms of an arbitrary characteristic
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Table 1
Dimensionless parameters for the two-site and two-region transport models

Parameter Two-site model Two-region model
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concentration, co, and characteristic length, L. The following dimensionless
model can be obtained (see also Nkedi-Kizza et al., 1984)

(1 - @)I?$+ =  w(C1 - C2)  - P2C2  + X2Wl y, 6 T) (3b)

where ,L? is a partition coefficient, R is a retardation factor, Ct and C2 are
equilibrium and non-equilibrium resident concentrations, respectively, T is
time; X is the longitudinal coordinate; Y and Z are transverse coordinates;
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P,, Py and P, are the Peclet  numbers in the X, Y and Z directions; w is a mass
transfer coefficient; p and X are dimensionless first-order decay and zero-order
production terms; and the subscripts 1 and 2 refer to the equilibrium and non-
equilibrium phases, respectively. The magnitude of several dimensionless
parameters in Eq. (3a,b) depends not only on the dimensional model
parameters but also on the arbitrary constants co and L. Unless specified
otherwise, we assume that the solute concentration is of the volume-averaged
or resident concentration type.

The initial and boundary conditions for Eq. (3) are

c, (X, Y, z, 0) = c&K K z, 0) = f(K y, z>

$3, Y,Z, T) = 0

Cl (X, fcq z, T) = 0 ~(x,*cm,Z,T) =o

c&Y, Y, *co, T) = 0 g+(X,  Y,hqT) =o

(6a, b)

(7a, b)

wherefand g are arbitrary functions which will be specified later, along with
A, to illustrate pertinent transport problems. Because advective-dispersive
transport occurs exclusively in phase 1, the boundary conditions are only
cast in terms of Ct. The linearity of the problem enables us to solve the
boundary (BVP), initial (IVP), and production (PVP) value problems
separately. In the BVP it is assumed that Xi and X2 in Eq. (3) and g(Y, Z,
T) in Eq. (5a) are equal to zero. The IVP is solved by dropping the production
terms, X, and by setting f(X,  Y, Z) equal to zero. The PVP requires that the
input function, g( Y, Z, T), and the initial distribution, f(X, Y, Z), are set to
zero.

Concentrations obtained from the effluent of finite soil columns or from
solution samplers are usually viewed as representing the equilibrium concen-
tration, Cr. On the other hand, soil coring or non-destructive techniques such
as TDR or electrical conductivity will give total concentrations, i.e. those
defined as mass of solute per unit volume of soil, with weighted contributions
from both the equilibrium (C,) and non-equilibrium (C,) phases according to

C, = ,BRCl + (1 - P) RC, (8)
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The injection and detection mode for several solute displacement exper-
iments may require the use of flux-averaged or flowing concentrations
(Kreft and Zuber, 1978; Parker and Van Genuchten, 1984). They can be
obtained by substituting the analytical expression for the resident concentra-
tion, C or C’, obtained for a third-type inlet condition, into the well-known
transformation

1 acr
cf=cr---

P, ax

This equation can be readily applied if the expression for C’ is differentiable
with respect to X and if the flow field is uniform, i.e. having a constant Peclet
number.

General solutions

The solution of Eq. (3),  subject to Eqs. (4)-(7) was obtained using Laplace
transforms with respect to X and T, and a double Fourier transform with
respect to Y and Z. This approach was discussed previously by Leij et al.
(199 l), among others. Further information regarding the use of integral trans-
forms can be found in Spiegel (1965) and Sneddon (1972). The solution of the
non-equilibrium three-dimensional ADE is tedious but relatively straight-
forward. Details regarding the derivation of all presented analytical solutions
are available from the senior author upon request. The inverse Laplace trans-
form with respect to Xutilizes the shifting property, the convolution theorem,
and a table of Laplace transforms. Subsequently, the last remaining boundary
condition (Eq. 5b) is used in conjunction with Leibnitz’ rule for differentiation
of an integral. The Laplace inversion with respect to T is carried out by using
the property that the iterated Laplace transform of a function is equal to the
ordinary Laplace transform of the generalized convolution integral of this
function (De Smedt and Wierenga, 1979a; Walker, 1987). This method was
applied by Lindstrom and Narasimhan (1973) to derive the solutions for an
initial value problem involving non-equilibrium sorption. The inverse Fourier
transformation constituted the last step of the solution procedure.

For an arbitrary input function, g( Y, Z, T )  the general solution to the BVP,
CB, is

c,” = g(Y-gS,Z--R,T-r) f’~(M,+~(~,r)

+ 1 dfld+dr
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useful foundation for deriving specific analytical solutions applicable to
simple boundary, initial, or production conditions. We derived solutions for
the BVP and IVP assuming a Dirac distribution, and for the BVP, IVP, or
PVP assuming Heaviside or exponential distributions in (1) semi-infinite
rectangular, (2) finite rectangular, (3) cylindrical, and (4) spherical regions.
All solutions are based on Fourier transforms and a Cartesian coordinate
system.

The different areas where solute is applied (BVP), initially distributed (IVP),
or produced (PVP), are sketched in Fig. 1. The first three cases are in the
transverse plane while the spherical case, which pertains only to the IVP and
PVP, includes the longitudinal coordinate. The magnitude for g needs to be
specified as a function of time for the BVP whilef for the IVP and X for the
PVP should be given as a function of the longitudinal distance for cases I, II
and III, or the radial distance for case IV. The input functions for the BVP, the
initial concentrations for the PVP, and the X profile for the PVP are given
schematically in Fig. 2. We continue by presenting the solutions for the
various cases of the BVP, IVP and PVP, along with some brief comments
regarding the method of solution.

Table 4(a) lists solutions for the BVP, and specifications of the input func-
tions and the type of transverse auxiliary function on which they are based.
The derivation of these transverse functions, I’, is fairly straightforward; the
specific independent variables for each problem are listed in the left-hand
column of Table 4(a). The entire solution can be obtained by inserting the
auxiliary functions given in Tables 2 and 3. For the Dirac input, i.e. for the
case where a solute mass m is applied instantaneously at position ( YO, Za) at
the surface at time TO, the expression for C, can be readily derived from the
general solution. The solution for C2 was obtained with the help of Fubini’s
theorem. In the case of a Heaviside-type input, an arbitrary number of solute
pulses with different constant concentrations is applied. The problem was first
cast in terms of the J-function, after which the expressions could be simplified
by changing the order of integration and integration by parts using some of
the properties of the J-function listed in appendix A of Van Genuchten (1981).
The integration with respect to the transverse coordinates, Y and Z, was based
on elementary properties of the error function (Gautschi, 1965). Case I con-
cerns solute application to a semi-infinite rectangular area; its finite corner
position ( Yi, ZJ may vary for each pulse. Similarly, cases II and III involve
solute application to finite rectangular and circular areas.

The third input function consists of a term which decreases exponentially
with time, as specified in Table 4(a). The solute in this case is applied to the
same region as for the Heaviside input function; however, the transverse
dimensions are time invariant. Evaluation of the general solution containing



F.J. Leij et al. / Journal of Hydrology 151 (1993) 193-228 215

go is very similar as for the Heaviside input. Evaluation of the gl function with
exponential decrease was done by applying Fubini’s theorem and partial
integration. The resulting expression consisted of the product of an exponen-
tial function and the zero-order modified Bessel function. Since no expression
for this integral appears to be available (cf. Luke, 1962) the series representa-
tion 9.6.12 of Olver (1965)

z,[$izj]  = l+‘T+f$T2+gT3+..
(1!)2 !2 !2 (16)

was used to integrate (2.321.2) of Gradshteyn and Ryzhik (1980). This
procedure led to

I
’ exp (Y&K b-1 dr

11

qv) = Ty -p w (T-P
n=l ( k=* yBk (n _ k)! ) and 33 = YB - (:‘$ uw

In most cases a convergent solution was obtained for a maximum y1 value of
25; however, the solution was less accurate for, among other factors, relatively
large values for a and T. Similar problems occur for the series approximation
of the J-function by De Smedt and Wierenga (1979b) (cf. Lassey, 1982).

Table 4(b) contains the different types of initial conditions for which the
IVP was solved, along with the definitions of variables in the auxiliary trans-
verse function, and the semi-infinite and finite rectangular, cylindrical and
spherical regions. For the Dirac initial condition, i.e. for an instantaneous
release of a solute mass m at (X0, Yo, Z,), the IVP can be readily solved. Note
that evaluation of the term containing f in Ci is impractical for the Dirac
condition. Specific solutions for the Heaviside-type initial distribution, con-
sisting of y1 semi-infinite or finite parallelepipeds, cylinders, or spherical shells,
were obtained through integration with respect to the longitudinal and trans-
verse coordinates. The identity

could be established with properties of the error function and the Laplace
transform; the expression for Gf  was included in Table 2. The solution for C:
again involved the application of Fubini’s theorem to evaluate one of the
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integrals with respect to time. For the spherical IVP, where the solute con-
centration is uniformly distributed in shells, the evaluation of the integrals was
hampered by the presence of variable integration limits. For the exponentially
decaying distribution with depth (0 < X < oo), the integration with respect to
the transverse coordinates was the same as for the Heaviside distribution with
an arbitrary number of steps. Integration in the longitudinal direction was
based on Eq. (18) and

1
O3 exp (-~rW’(K 7) dt = G#, 7) (19)
0

which was derived through integration by parts and using properties of the
error function and expression (3.322.2) of Gradshteyn and Ryzhik (1980).
This approach is an alternative to evaluating integrals using Laplace trans-
forms. Note that the IVP was not solved for an initial profile that decreases
exponentially from the center of a spherical region.

Finally, several specific solutions were obtained for the PVP assuming only
a spatial dependency of Xk. Time dependency can easily be introduced (cf.
Lindstrom and Boersma, 1989),  although it is then quite difficult to simplify
the general solution significantly. Table 4(c) contains the production functions
and the expressions for the concentrations and auxiliary functions, I’j, for
seven problems. The Xk profiles were described with Heaviside and exponen-
tial functions for the same geometries as the PVP. The methodology to obtain
the specific solutions is similar as used previously for the BVP and the IVP.

All integrals in the analytical solutions of Table 4 were evaluated with
Gauss-Chebyshev quadrature (Carnahan et al., 1969). This method allows
greater flexibility in the number of integration points, as opposed to, for
example, Gaussian integration. A disadvantage, particularly for the solutions
involving multiple integration, is the increased amount of computer time. If
this is of major concern, one may prefer to solve the entire problem numeri-
cally. Further information regarding the computer program to evaluate the
solutions in Table 4 can be obtained from the senior author.

Examples

In this section we provide several illustrations of results obtained with the
analytical solutions from Table 4. Since the three-dimensional non-equili-
brium model is based on existing and generally well-known one-dimensional
non-equilibrium and three-dimensional equilibrium models, we will not focus
on the conceptual aspects of the predicted concentration profiles, nor will we
provide a complete overview of results for all different cases. For example,
Dirac functions, spherical geometries, and flux-averaged concentrations will
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Fig. 4. IVP involving a Heaviside profile of finite rectangular regions with v = 50, R = cO = 1, D, = 20,
Dy = D, = 5, Jo, = kL2  = 0, and L = 100. Two-dimensional solute profiles at z = 0: (a) initial distribution

f0rC1 = c2 with cfl,f2,hfi)=(~,  1, 0.5, O),  (XI>  x2, x3, x4)=@,  5,10, 15), CY2,.~3)=(~2r  23)  =(5, 10); (b) CI
profile at t = 0.5 for p = 0.5 and w = 1; (c) C2 profile at t = 0.5 for p = 0.5 and w = 1; (d) CT  profile at
t = 0.5 for 0 = 0.5 and w = 1; (e) C, profile at r = 0.5 for p = 0.9 and w = 5.

not be treated. The model parameters are dimensional in all examples given
here, except for CL,  X and w; no units will be specified for these rate parameters,
and hence the results can be interpreted using any dimensionally consistent set
of parameters. The dimensionless concentration is investigated as a function
of dimensional time and position.

The first example involves breakthrough curves stemming from a result of a
Heaviside step input or initial condition for a semi-infinite transverse region.
Figure 3(a) presents the equilibrium resident concentration for the BVP as a
function of t and y for pulse and step input, with intermediate application of
solute-free water, at the surface region given by y < 0 and z < 0. During
transport through the soil the magnitude of the first solute peak, gl = 5,
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has been reduced considerably at the soil outlet. Notice that a steady-state
concentration equal to g2 = 2 is established for t > 3. Figure 3(b) shows the
breakthrough curve for the IVP with a similar initial profile as the input
function for the BVP in Fig. 3(a). The solute peaks are somewhat higher
and a clear dip between solute peaks can be distinguished at about t = 1, in
contrast to the BVP. The transverse solute profiles for both cases are fairly
symmetrical about y = 0.

The second example involves solute distributions in the xy-plane at t = 0.5
and z = 0 resulting from a uniform initial solute distribution in the form of
two parallelepipeds. The initial distribution is sketched in Fig. 4(a). The two-
dimensional profiles for C,, C2, and Cr are sketched in Figs. 4(b), (c) and (d),
respectively, using ,D = 0.5 and w = 1. The concentration in the equilibrium
phase is largely determined by advection and dispersion; the initially distinct
solute peaks have disappeared as a result of dispersion (Fig. 4(b)). Because no
advective  or dispersive transport can occur in phase 2, the C2 profile still
resembles the initial profile at t = 0.5. The solute in the region x > 25, i.e.
near the toe of the C2 profile, arrived there by movement in phase 1 and
transfer between the two phases according to Eq. (3b). Exchange between
the two phases also causes a tail to develop in the equilibrium profile (Fig.
4b). The resulting total concentration, Cr, is plotted in Fig. 4(d). A similar C,
profile for the ‘equilibrium’ condition (,0 = 0.9, w = 5) is provided in Fig. 4(e).
Notice that the non-equilibrium profile is contained within a smaller region of
the soil and with higher maximum concentrations.

A third example is used to illustrate the effects of changes in the first-order
decay term, p. Figure 5(a) shows how the solute is initially distributed between
depths x = 5 and 15 in two parallelepipedal areas. The solute will move
downward as a result of the application of solute-free water at the surface.
Consider a hypothetical case where, for instance through bioremediation, one
hopes to decrease the concentration to sufficiently low levels before the solute
reaches an underlying aquifer. Figures 5(b)-(d) show the contours of the total
concentration, Cr, in the xy-plane at t = 1 for an increasing ~1 assuming equal
decay in the equilibrium and non-equilibrium phases. This rather simplistic
example clearly demonstrates decreasing solute concentrations in both direc-
tions as a result of decay. Because dispersion and diffusion are relatively
important compared with advection, part of the solute moves upward from
the initial area toward the soil surface.

Fig. 5. (opposite) IVP involving a Heaviside profile of finite rectangular regions with Y = 5, R = q, = 1,
D, = 40, Dy = D, = 10, ~1 = ~2 = 0, w = 5, /‘J = 0.9. (a) Initial distribution with (fi,f2,h,f4)  =(O, 2, l,O),
(xl, x2, xl, x4) = (0, 5, 10, 15),  (_I+.  ~3) = (5, 2.5),  and (~2,  ~3) = (5, 2.5); (b) CT contours at z = 0 for
fi, = ~2 = 0; (c) CT  contours at z = 0 for p, = ~2 = 0.5; (d) CT  contours at z = 0 for p, = JL* = 1.0.
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Fig. 7. (Continued)

A more detailed picture of the transverse solute profile as a result of non-
equilibrium conditions is given in Fig. 6. This example illustrates a BVP
involving the steady application of a solute to a circular region of the soil
surface. Figures 6(a) and (b) give the Ct and C2 profiles, respectively, at
x = 10 and t = 1. The highest concentration in the equilibrium phase in
Fig. 6(a) occurs when non-equilibrium conditions dominate (,D = 0.1 and
w = 0.1). Note again that although these concentrations will occur in the
effluent, concentrations in the soil expressed as solute mass per total liquid
or bulk volume are considerably lower. Figure 6(b) shows relatively high
values for C2 during minor non-equilibrium conditions; in this case the solute
transfers relatively easy from the equilibrium to the non-equilibrium phase
because of the increased value of the transfer coefficient and a large propor-
tion of the equilibrium phase. Figures 6(c) and (d) show transverse solute
profiles for t = 5. The C1 profiles are virtually identical and approach a
steady-state profile for all three degrees of non-equilibrium. On the other
hand, significant differences still exist between the C, profiles, with the non-
equilibrium profile for ,L3 = 0.1 and w = 0.1 still slowly increasing. The differ-
ence in transverse profiles as a result of non-equilibrium is very similar as for
the longitudinal profiles already investigated for one-dimensional transport
(e.g. Toride et al., 1993). Eventually, all equilibrium and non-equilibrium
profiles will become identical.
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The last example deals with different Heaviside production profiles for the
equilibrium and non-equilibrium phases. Figure 7(a) shows the assumed
production profiles X,(x)  and X,(x)  in a semi-infinite rectangular area
(- cc < y < 0 and - cc < z < 0). The equilibrium and non-equilibrium con-
centrations at y = z = - 10 for t = 1 and 10 are given in Figs. 7(b) and (c),
respectively. The non-equilibrium C, profile resembles the corresponding X2
distribution much more closely than the C, profile follows the X1 distribution.
The explanation for this behavior is similar to that for the distributions in Fig.
4. The phase 2 solute profile is considerably less smooth than the phase 1
curve. Furthermore, the concentration below the production zone decreases
as a result of dispersion. These observations hold true for the initial period
(t = 1) as well as for t = 10, when a steady-state situation has been established
in which the production and advection-dispersion processes balance each
other.

Summary and conclusions

General analytical solutions were derived for three-dimensional non-equi-
librium advectiveedispersive transport during one-dimensional steady flow in
a semi-infinite soil system. The transport model accounts for two-site chemical
non-equilibrium or two-region physical non-equilibrium, and contains terms
for first-order degradation, and zero-order production. The analytical proce-
dure consisted of taking Laplace transforms with respect to time and the semi-
infinite longitudinal spatial coordinate, and Fourier transforms for the infinite
transverse directions. The inverse transformations were carried out according
to procedures previously reported for one-dimensional non-equilibrium and
three-dimensional equilibrium transport. The resulting general solutions of
the BVP, IVP and PVP, apply to flux- and volume-averaged concentrations
for phases 1 and 2. Solutions for a Dirac input or initial distribution could be
readily derived from the general solutions. Other useful expressions were
derived by specifying the transverse geometry where the solute was applied
(BVP), initially distributed (IVP), or produced (PVP), namely: (1) a semi-
infinite rectangle; (2) a finite rectangle; (3) a circle; (4) a sphere. Time-depen-
dent solute input for the BVP was modeled as a series of step or Heaviside
functions and an exponential function. The initial and production profile
distribution were also specified vs. depth as Heaviside or exponential
functions. For the Heaviside function this led to an initial or production
domain that, corresponding to the previous four transverse geometries,
consisted of a series of: (1) semi-infinite parallelepipeds; (2) finite parallelepi-
peds; (3) cylinders; (4) concentric shells. All specific analytical solutions were
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presented in tabular form. Several graphical illustrations of concentration
profiles and breakthrough curves were given for results obtained with
solutions to the BVP, IVP and PVP. These results are generally straight-
forward extensions of previous findings for one-dimensional non-equilibrium
transport.
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